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Executive Summary

Parkinson's disease is a progressive neurological disorder that affects movement. It is
caused by the death of cells in the brain that produce a chemical called dopamine, which helps
regulate movement. An extremely evident symptom of Parkinson’s disease is the “Freezing of
gait (FOG) .” This is when an individual’s feet gets “stuck” to the ground, making it difficult or
impossible to take a step. Freezing of gait can be very distressing and significantly impact a
person’s ability to move around and participate in activities. The current diagnosis treatment for
detecting Parkinsons can be time consuming and involves the patient being given a series of
questionnaires that provides insight to doctors regarding whether the patient has the disease. So
in most cases the patient struggles with the disease before necessary medication and attention is
given to the patient, and the problems remain to be persistent as medical professionals are unable
to detect the extent of the disease as the diagnosis has no definitive test and is extremely
vulnerable to misdiagnosis. In consideration of these disadvantages, this project sets an attempt
to solve this problem by using a machine learning model built on a mobile app for activity
recognition and freezing of gait detection enabled by the use of triaxial motors in present mobile
phones. The problem solution is finding a more accessible, accurate and practical way of
identifying Parkinson's disease by detecting freezing of gait via a smartphone app and machine
learning. This app will also allow for an easy, hands-free way to keep track of how many FOG
events occur per day which is a very useful diagnostic marker to identify progression or
regression of disease. With support from the National Science Foundation and in collaboration
with Rexa.Info, UC Irvine Machine Learning Repository released a dataset called the “Daphnet
Freezing of Gait” in 2013. Using this published dataset, we trained an AdaBoost machine
learning model on the dataset, where over 200 FOG episodes were recorded over the course of
the experiment. The model learns based on a sliding window of FOG vs Non-FOG events, with
over 500 statistical features (including fourier transform) being calculated over the windows.
After successful training, an Activity Recognition model built with an XGBoost framework will
use a similar sliding window approach to learn activities based on accelerometer data. The
AdaBoost model with a Random Forest classifier baseline was trained and tested using a 5 fold
cross validation and showed a 87% accuracy in distinguishing FOG windows vs Non - FOG
Windows. The original Daphnet study achieved 73% sensitivity in predicting FOG events, while
our model achieved 77%. Our XGBoost activity Recognition model scored >90% F1 scores in
predicting activities such as walking, jogging, sitting, and standing.The next step taken was to
integrate this study on the app, for the front end React Native(JS) CLI + Expo CLI was used to
provide compatibility for iOS. In the backend Node JS, Express JS and Tensorflow JS were used.
Finally, to obtain the accelerometer data from the phone, expo sensors were used. User testing of
the app and further tuning of the models is still in progress.
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Introduction

Background: Parkinson’s Disease, Freezing of Gait (FOG), Machine Learning Models,

Fourier Transform

- Parkinson’s Disease

1. What is Parkinson’s Disease?

Parkinson's disease is a progressive neurological disorder that affects movement and is

characterized by symptoms such as tremors, stiffness, and difficulty with movement and balance.

It is caused by a loss of dopamine-producing cells in the brain. While there is no cure for

Parkinson's disease, medication and other treatments such as deep brain stimulation can help

manage symptoms and improve quality of life. Identifying early signs is important to allow for

earlier intervention and support.

2. What causes Parkinson’s Disease?

Parkinson's disease is caused by the death of dopamine-producing cells in a region of the brain

called the substantia nigra. The exact cause of this cell death is not yet fully understood, but it is

believed to be a combination of genetic and environmental factors. Research has identified

several genetic mutations that may contribute to the development of Parkinson's disease, but

these mutations are relatively rare and are thought to account for only a small percentage of

cases. Environmental factors such as exposure to certain toxins, head injuries, and infections may

also play a role in the development of Parkinson's disease, although more research is needed to

fully understand these connections.There is also evidence to suggest that inflammation and

oxidative stress may contribute to the development of Parkinson's disease. Inflammation can

damage neurons and disrupt the normal functioning of the brain, while oxidative stress can

damage cells and contribute to the death of dopamine-producing cells in the substantia nigra.

Overall, Parkinson's disease is a complex condition with multiple factors contributing to its
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development. While the exact cause of Parkinson's disease remains unknown, ongoing research

is working towards a better understanding of the condition and potential treatments.

3. What are some common symptoms of Parkinson’s Disease?

Parkinson's disease is a neurological disorder that affects movement, and the symptoms can vary

from person to person. However, some of the most common symptoms of Parkinson's disease

include:

- Tremors: Uncontrollable shaking or tremors in one or more limbs, typically starting in

one hand or arm.

- Bradykinesia: Slowness of movement, making everyday activities such as getting dressed

or brushing teeth more difficult.

- Rigidity: Stiffness and resistance to movement in the limbs or trunk.

- Postural instability: Difficulty with balance and coordination, leading to falls.

- Freezing of gait: Brief episodes where the person's feet seem to get "stuck" to the ground,

making it difficult to take a step.

- Changes in speech: Difficulty with speaking clearly or softly, slurring of words, or a

monotone voice.

- Micrographia: Small, cramped handwriting.

Other symptoms may include fatigue, depression, anxiety, sleep disturbances, constipation, and

loss of sense of smell. It's important to note that not all individuals with Parkinson's disease will

experience all of these symptoms, and the severity and progression of symptoms can vary

widely.

Freezing of Gait

1. What is Freezing of Gait?

Freezing of gait (FOG) is a common symptom of Parkinson's disease that affects a person's

ability to initiate and continue walking. FOG is characterized by a sudden and brief inability to
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move the feet, making it feel like the person's feet are glued to the ground. It can occur when

starting to walk, turning, or approaching an obstacle.

FOG is a complex symptom that can be caused by a combination of physical and cognitive

factors. Physical factors include muscle weakness, poor balance, and rigidity, while cognitive

factors can include anxiety, distraction, or hesitation. FOG can be particularly distressing for

people with Parkinson's disease, as it can lead to falls and reduced mobility.

Figure 1

2. How can Freezing of Gait be detected?

Accelerometers are devices that can detect changes in movement and are commonly found on

most smartphones. They can be used to detect freezing of gait (FOG) by measuring changes in

movement patterns associated with FOG episodes. One way accelerometers can be used to detect

FOG is by analyzing the gait pattern during normal walking and comparing it to the pattern

during FOG episodes, which is performed by our machine learning model. During FOG, there

may be a sudden decrease in the amplitude and frequency of lower limb movements. This

reduction in movement can be detected by an accelerometer placed on the foot or leg.
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- Ensemble Methods

1. What are Ensemble methods?

Ensemble methods are a set of machine learning techniques that combine multiple models to

improve the accuracy and robustness of the predictions. Ensemble methods work by combining

the predictions of several models, either through a voting system, weighted average or stacking,

in order to produce a single more accurate prediction. Ensemble methods are especially useful in

situations where the data is noisy or uncertain, as they can help to reduce the impact of errors or

biases in individual models.Some of the most popular ensemble methods include bagging,

boosting, and random forests. Bagging involves building multiple models on different subsets of

the training data, and then averaging their predictions. Boosting, on the other hand, trains

multiple models sequentially, with each model attempting to correct the errors of the previous

model. Random forests combine the ideas of bagging and decision trees, by building an

ensemble of decision trees on random subsets of the data. Ensemble methods have become

increasingly popular in recent years, and are widely used in a variety of applications, including

image and speech recognition, natural language processing, and recommendation systems.

Figure 2
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2. What is ADABOOST?

AdaBoost, short for Adaptive Boosting, is a machine learning ensemble algorithm that combines

weak learners to create a strong learner. In AdaBoost, weak learners are simple models that

perform slightly better than random guessing, such as decision trees with a small number of

levels or simple regression models. AdaBoost iteratively trains these weak learners on the same

dataset, with more emphasis on the samples that were misclassified by the previous model. This

allows the subsequent models to focus more on the difficult samples that were misclassified,

thereby improving the overall accuracy of the ensemble. During the training process, AdaBoost

assigns weights to each sample in the dataset, with more weight given to the misclassified

samples. In each iteration, the weak learner is trained on the weighted data, and a new weight is

assigned to the model based on its accuracy. The final prediction of the ensemble is a weighted

sum of the predictions of each individual model. AdaBoost is known for its high accuracy,

robustness, and ability to handle complex datasets with high-dimensional feature spaces. It has

been successfully applied to a wide range of applications, such as computer vision, natural

language processing, and bioinformatics.

Figure 3

3. What is XGBOOST?
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XGBoost stands for "Extreme Gradient Boosting," and it is a popular open-source machine

learning algorithm for solving classification and regression problems. It is based on the gradient

boosting framework and has gained popularity due to its speed, performance, and flexibility. The

main idea behind XGBoost is to create a series of decision trees that can be used for making

predictions on new data. Each decision tree is trained on a subset of the training data and the

features are selected based on their importance in improving the performance of the model. The

output of the decision trees is then combined in a way that maximizes the overall performance of

the model.XGBoost has several key features that make it popular among data scientists and

machine learning practitioners. These include:

- Speed: XGBoost is designed to be fast and efficient, making it suitable for large-scale

datasets.

- Regularization: XGBoost has built-in regularization techniques such as L1 and L2

regularization to prevent overfitting and improve the generalization performance of the

model.

- Handling missing values: XGBoost can automatically handle missing values in the data

without the need for imputation techniques.

- Interpretability: XGBoost provides information on feature importance, which can help in

understanding the underlying data patterns.

Figure 4
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1. What are Random Forests?

Random Forests is a machine learning algorithm used for classification, regression, and other

tasks. It is an ensemble learning method that combines multiple decision trees to create a more

accurate and robust model. Random Forests works by building multiple decision trees on

randomly selected subsets of the data and features. Each decision tree is trained on a random

subset of the training data and a random subset of the features. The final prediction is then made

by taking the majority vote (in classification) or the average (in regression) of the predictions of

all the individual trees.

The main advantage of Random Forests is that it reduces overfitting by averaging the predictions

of multiple trees. This makes it less sensitive to noise and outliers in the data, and less prone to

overfitting compared to a single decision tree. Random Forests can also handle missing data and

perform well with high-dimensional datasets. It can be used for both supervised and

unsupervised learning tasks, such as classification, regression, clustering, and anomaly detection.

Figure 5

4. What is Fourier Transform
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The Fourier transform is a mathematical technique that allows us to convert a signal or a function

from its time or spatial domain to its frequency domain. In other words, it decomposes a complex

signal or function into its constituent sinusoidal components. This transformation is named after

Joseph Fourier, a French mathematician who discovered it in the early 19th century.

The Fourier transform is an important tool in time series forecasting because it can help identify

the underlying periodicities and trends in a time series. By analyzing the frequency components

of a time series using Fourier transform, we can identify patterns such as seasonality or cyclical

behavior that are not immediately apparent from the raw data.Once the frequency components of

a time series have been identified, various techniques can be used to model and forecast the time

series based on those components. For example, one approach is to decompose the time series

into its seasonal and trend components using techniques such as seasonal decomposition of time

series (STL) or the Holt-Winters method. The Fourier transform can be used to extract the

seasonal component of the time series, which can then be modeled and forecasted separately.

Another approach is to use Fourier analysis to identify the dominant frequencies in the time

series and then use that information to build a forecasting model. This approach is often used in

signal processing and can be applied to time series data as well. In summary, the Fourier

transform is important in time series forecasting because it helps identify the underlying patterns

and periodicities in the data, which can be used to build more accurate forecasting models. By

using the Fourier transform as a tool for feature extraction and analysis, we can gain deeper

insights into the structure of the time series and develop better forecasting models.

11



Figure 6 (Shows the following fourier transform or base sinusoid of the signal produced)

5. What is the Fast Fourier Transform?

The Fast Fourier Transform (FFT) is an algorithm that computes the Discrete Fourier Transform

(DFT) of a sequence, which is a mathematical transformation that converts a signal from the time

domain into the frequency domain. In simpler terms, the FFT is a way of analyzing a signal to

determine the frequency components that make it up. For example, if you have an audio signal of

a person speaking, the FFT can be used to determine the different frequencies of sound waves

that make up that speech signal.

The FFT can be used in time series forecasting to identify and extract useful patterns from the

12



data in the frequency domain. This can be particularly useful for identifying cyclic patterns or

seasonality in the data.

Here are the steps to use the FFT in time series forecasting:

2. Preprocessing: The first step is to preprocess the time series data by removing any trends

or seasonal components that can interfere with the frequency analysis. This can be done

using techniques such as differencing or seasonal decomposition.

3. Compute the FFT: The next step is to compute the FFT of the preprocessed time series

data. This will transform the data from the time domain to the frequency domain.

4. Identify the dominant frequencies: The FFT will produce a frequency spectrum that

shows the various frequencies present in the data and their respective amplitudes. The

analyst can identify the dominant frequencies by examining the frequency spectrum and

selecting the frequencies with the highest amplitudes.

5. Forecasting: Once the dominant frequencies have been identified, they can be used to

create a forecast by extrapolating the pattern into the future. This can be done by creating

a sinusoidal function with the identified frequency and amplitude and projecting it into

the future.

6. Validation: Finally, it is important to validate the forecast by comparing it to actual data.

This can be done by comparing the forecasted values to the actual values and calculating

the forecast error.

Overall, the FFT can be a powerful tool for time series forecasting as it allows analysts to

identify and extract useful patterns from the data in the frequency domain.
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Figure 7 (The following illustration shows 8 data points being split into two groups of 4 points

each. Each set goes through an algorithm that analyzes the data points in terms of frequency

domains. which represent the signal in the frequency domain. The magnitude and phase of

each data point is representative of the amplitude and phase of a corresponding frequency

component in the signal. The DFT can then be effectively calculated using the FFT algorithm.

The algorithm enables the use of the predictable nature of sinusoids and how they overlap to

make the necessary computation)
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Purpose

Finding a more accessible and practicable way of monitoring Parkinson's disease by detecting

freezing of gait and user activities via a smartphone app and machine learning.

Materials

● Daphnet FOG dataset

(https://archive.ics.uci.edu/ml/datasets/Daphnet+Freezing+of+Gait)

● WISDM Activity recognition dataset (https://www.cis.fordham.edu/wisdm/dataset.php)

● React Native (JS) CLI + Expo CLI

● Node JS

● Express JS

● Tensorflow JS

● Expo Sensors

● Python Flask

● Google Cloud Engine
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Methods

- Creating the FOG model

Step 1: Loading the Dataset

The first step of the project was to train two models, the AdaBoost and XGBoost models, in

being able to make accurate predictions from the Activity Recognition and Daphnet Freezing of

Gait Dataset. From both datasets, upper thigh acceleration was recorded from three axes. The

dataset used to train the model consisted of accelerometer data from subject 5 of the study

sampled from three axes at the ankle, thigh, and trunk. Only the UHF (Upper leg thigh

acceleration - horizontal forward acceleration [mg]), UV (Upper leg thigh acceleration - vertical

[mg]) , and UHL (Upper leg thigh acceleration - horizontal lateral [mg]) acceleration data could

be used to train the model, however, since the WISDM activity recognition dataset consisted of

values only measured from the thighs.

Figure 8: Daphnet dataset
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The dataset also consisted of a Time column which was measured in milliseconds (ms) where

acceleration values were recorded every 15 ms over the course of 36 minutes (duration of the

experiment). The final and most important column is the “Annotation” column, where a 0

indicates that a given acceleration reading did not occur during a FOG event (No-FOG) and a 1

indicates that the acceleration reading occurred during a FOG event.

Step 2: Training the model

After the FOG dataset was loaded in, feature calculation was performed through the tsfresh

python library, which automatically uses a sliding window through the dataset to compute over

1000 features. In order to prevent high dimensional input data, only a certain number of the

original features could be selected for training the model. Most Calculated features showed a

negligible correlation with the occurrence of FOG events, so r > 0.1 was used as the filter to

acquire slightly correlated features with FOG activity. In total, 593 features were calculated and

would be used to train the model.

Because the data was a time series dataset in nature, classical machine learning

techniques could not be used to predict groups of collective anomalies or FOG events. Because

of this, a sliding window (Figure 9) with a size of 50 data points (50 acceleration values) would

scan through the dataset and the tsfresh library would compute features over each window of

data. Examples of a few of the features calculated are sum of acceleration values, mean

acceleration in the window, median acceleration, standard deviation of acceleration, kurtosis, etc.

These features would be computed for UHF, UV, and UHL accelerations (x,y, and z axis). A

window size of 50 was decided since it resulted in highest model accuracy when compared to

other window sizes below 66. A window size of 66 would be a window of approximately 1

second of acceleration data (66*15), which would also mean that there would be a 1 second

latency period between model prediction and live data collection. 1 second or 66 rows was

decided as the max window size (a larger number would result in a greater latency), and 50 rows

was the smallest number that seemed to show the best model performance. Another variable that

had to be decided was if a window would be labeled as a FOG or Non-FOG event. Based on

extensive testing and experimenting, it was found that a threshold of 0.4 seemed to show the best

model performance (If 40% of annotations in the window are a 1, then the entire window would
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be classified as a FOG window). This variable has the greatest influence on model prediction, so

further tuning of this parameter upon testing of the app is a future goal.

Figure 9: Example of sliding window

After all sliding windows were compressed into a single row or data value, the final dataset

ultimately had 1356 rows where each row represents a window of 50 rows of the original data.

After the scikit learn min-max scaler was applied to normalize each column of the data between

values of 0 and 1, an AdaBoost model with a random forest baseline classifier was trained on the

data. The model would be validated through a 5-fold cross validation and a LOOCV (Leave one

out cross validation) as described in the results.

- Creating the Activity Recognition Model

Step 1: Loading the Dataset

The WISDM activity recognition dataset was loaded into the jupyter notebook file with the

pandas module. The dataset consisted of ~1,000,000 rows of triaxial thigh accelerometer data

from 36 users as shown by Figure 10.

Figure 10
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The “activity” column consisted of annotation for 6 possible activities the user was engaging in:

Walking, Jogging, Sitting, Standing, going upstairs and going downstairs (Figure 11 and 12).

Because the goal of creating the activity recognition model was to determine when the FOG

model should be activated, the model needed to be able to accurately predict when a user is

walking/jogging vs sitting/standing.

Figure 11 and 12

Step 2: Training the model

The process for training the model was similar to the FOG model. Because this dataset was

sampled at 50 ms, a 15 row window size had to be created in order to produce the same

prediction time (0.75 seconds) for both FOG model and activity recognition model (FOG: 50
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rows * 15 ms vs Activity Recognition: 15 rows * 50 ms). The process of feature engineering was

slightly different from the FOG model.

First, 18 simple statistical features were calculated for each axis on the 15-row sliding

window as the entire dataset was scanned (18*3 = 54 features). These statistical features

condensed accelerometer data from 15 rows into 1 value for each of the three axes of

acceleration. The calculated features were mean acceleration, standard deviation, average

absolute deviation, minimum acceleration, maximum, difference of maximum and minimum

values, median, median absolute deviation, interquartile range, negative values count, positive

values count, number of values above mean, number of peaks, skewness, kurtosis, energy,

average resultant acceleration, and signal magnitude area. Finally, the fast fourier transform and

power spectral density functions were applied to each window and all above features were

recalculated from the new arrays. After the feature engineering, Figure 13 shows the final dataset

before training the model, where each row in the below dataset represents a window of 15 rows

in the original dataset. In total 156 features (excluding label column) were engineered from the

original triaxial acceleration values.

Figure 13

The above dataset was normalized with the min max scaler and was used to train an XGBoost

model to make multiclass predictions of a user’s activity based on the 156 provided features. The

model’s accuracy was evaluated through a 5-fold cross validation test.
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App Creation

Terminology

Front-end: Frontend is the portion of the app that is shown to the user. It consists of the User

Interface (UI) and must be able to handle user inputs; front-end handles all the interactions with

the user.

Back-end: Backend of an app is the portion of the app that handles data computation, data

storage, and any other logical processes that allow the app to operate. In other words, the

back-end handles the logic of the application, and does not interact with the user.

API (Application Programming Interface): APIs are essentially the connection between the

front-end and the back-end of the application. It allows these two components to communicate

with one-another through a series of requests and responses.

Objective of the Application

The table below demonstrates what each component of the app must be able to do:

Front-end Back-end API

- Be able to read and
collect iPhone
accelerometer data

- Be able to send the
collected
accelerometer data to
the back-end

- Have a consistent UI
that allows the user to
navigate the app
smoothly

- Be able to interact
with the back-end

- Be able to receive
accelerometer data
from the front-end
through an API

- Be able to feed in the
received
accelerometer data
into a machine
learning model and
obtain a prediction

- Be able to send the
model prediction to
the front-end through

- Create a stable
connection between
the front-end and the
back-end

- Be able to send
accelerometer values
from the front-end to
the back-end

- Be able to send
predictions from the
back-end to the
front-end
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through an API an API

Step 1: Front-end Prototype - Choosing the Software

The first step of creating a front-end for the application is to decide which software to use to

make the application. There are several main questions that go into deciding the software:

- What platform will the application run on? Android? iOS?

- Will the application be available on all major platforms?

- What kind of tools are present in the application?

- What kind of tools does the application need access to?

We wanted the application to be available on all major platforms (most notably iOS and

Android). In addition to that, the application must be able to read and store accelerometer values

of the cell-phone. React Native, a software built by facebook for app development, fulfilled both

of these major requirements. In addition to fulfilling these two requirements, our team also had

prior experience with React JS (the Javascript library that React Native is built on), allowing us

to build the application without having to learn a new language.

Collecting accelerometer values of the cell phone

In order to collect the accelerometer values of the user’s phone, we used a React Native

library called Expo Sensors. However, Expo Sensors could not be used without implementing the

app using Expo CLI. Therefore, our initial prototype of the app was built using Expo CLI.

However, in order for our application to fully function, we must be able to send this

accelerometer data to our backend through an API. Since we used a local computer to run the

backend server (through local host) during development, our server was hosted under HTTP

protocol, rather than a more secure HTTPS protocol. However, due to Apple's security protocols,

requests to insecure sites (such as those not protected by HTTPS) are blocked. This can be

avoided through changing the application’s metadata. However, this change of metadata could

not be done through Expo CLI due to its high level nature. This problem was fixed through

creating a project through the command line command “create-react-native-app”, which allowed
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projects to incorporate both React Native CLI and Expo CLI. This essentially allowed us to

maintain access to the phone’s accelerometer data while enabling control over the application’s

metadata.

The code below creates an exception to Apple's security protocol, allowing the application to

connect to my computer locally.

<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

<key>NSExceptionDomains</key>

<dict>

<key>{Domain}</key>

<dict>

<key>NSIncludesSubdomains</key>

<true/>

<key>NSExceptionAllowsInsecureHTTPLoads</key>

<true/>

<key>NSExceptionRequiresForwardSecrecy</key>

<true/>

</dict>

</dict>

</dict>

Accelerometer values are collected as follows:

- Accelerometer values are collected every 15 milliseconds

- At each instance of collection, acceleration in the x-axis, y-axis, and z-axis are stored in

their respective list
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- After a certain amount of accelerometer data is collected, the arrays of x-axis

acceleration, y-axis acceleration, and z-axis acceleration are sent to the backend through a

POST request, and the array is cleared

This overall process is shown in the pseudo code below:

x_list = []

y_list = []

z_list = []

data_length = {model’s ideal length of data}

//app is running

//DeviceMotion handles the accelerometer value events

DeviceMotion.addListener((accelerometer_data)=>{

x_list.push(accelerometer_data.x)

y_list.push(accelerometer_data.y)

z_list.push(accelerometer_data.z)

if x_list.length == data_length

POST Request —> body: [x_list, y_list, z_list]

})

This allows for the prototype of the front-end with essentially all the necessities of the

application.
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Step 2: Back-end Prototype - Choosing the Software

As aforementioned, the backend of the application will handle the application’s

interactions with the machine learning model. This includes preparing the accelerometer data for

model input, which mainly consists of computing the features of the accelerometer data (these

features are the inputs to the models). Both the activity recognition model and the FOG detection

models utilize complex statistical methods to compute the features. Therefore, it is in our best

interest to use a language such as Python, that has the tools necessary to compute these features.

In addition to that, the original model was trained on features computed using Python libraries,

so in order to minimize the chances of errors in the code, we decided to use Flask (a Python

Back-end library) to create our backend. This would allow us to mimic the original method of

feature engineering.

Overall Process (Backend) :

The overall process for the backend is as follows:

1) Input arrays (x-list, y-list, z-list) are converted from JSON to a python array

2) The features are computed for the array (for both the activity recognition model and the

FOG detection model)

3) Predictions are made by the model

4) These predictions are sent to the frontend as a response to the original POST request

Step 3: Testing

We tested the application on two main components: prediction when the user is still and

when the user is walking. The inefficiencies of setting up a controlled experiment to test the

application’s detection of upstairs (walking upstairs) and downstairs (walking downstairs)

discouraged us from testing these two types of predictions. In order to test still and walking, we

recorded the accuracy of the application’s predictions when the user is still (sitting and standing

still) for three minutes, and accuracy of the predictions when the user is walking continuously for

three minutes. We perform several trials of these tests (2~3). Through these testing periods, the
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iPhone (our testing device) was put inside a pocket, located on the upper thigh. These tests were

conducted in a house to make sure the conditions of testing were realistic.

Window Size 15 50

Accuracy - Still 98% 100%

Accuracy - Walking 79% Data Collection in Progress

Points of Errors → Errors mostly occurred during these conditions:

- Fast paced walking – errors seldom occurred when the user was walking faster, in which

the model would predict the user was walking. This most likely occurred from the fact

that the training data was taken from older patients.

- Turning – although errors during moderate turns did not occur often, sharp turns would

often cause the model to predict the user was jogging

Although the data collection is in progress for measuring the accuracy of walk predictions for the

window size of 50, from what we have gathered so far, the accuracy has been between mostly

around 85%, showing a significant increase from the 79% with the window size of 15.

Google Cloud App Engine

After enough tests have been performed and the model has been tuned, the app will be

run on the google cloud app engine. This will allow for the application to be easily scalable, and

will also allow the application to bypass Apple's security guidelines regarding secure domain

connections. Figure 14 shows the predicted logic of the application after development.

Progress

So far, the application can do the following:

Front-end Back-end API
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- Be able to read and
collect iPhone
accelerometer data

- Be able to send the
collected
accelerometer data to
the back-end

- Be able to interact
with the back-end
through an API

- Be able to receive
accelerometer data
from the front-end
through an API

- Be able to feed in the
received
accelerometer data
into a machine
learning model and
obtain a prediction

- Be able to send the
model prediction to
the front-end through
an API

- Create a stable
connection between
the front-end and the
back-end

- Be able to send
accelerometer values
from the front-end to
the back-end

- Be able to send
predictions from the
back-end to the
front-end
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Figure 14: Overview of App - Application Flowchart
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Results

Exploratory Data Analysis (EDA)
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Figures 15-18

Figures 15-18 show matplotlib generated graphs of the triaxial accelerometer data for the first

400 samples of the signal. Visually, accelerometer data while the user is walking/standing have

higher amplitudes and frequency than data from sitting/standing.
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Figures 19-21

Figures 19-21 show the distribution of signal data for 3 axes with each activity hue, to see if

there was an obvious pattern in accelerometer data between different activities. It is observed that

there is very high overlap in the data among activities like Upstairs, Downstairs, Walking,

Jogging and Standing on all the axes. Sitting appears to have distinctive values along the y-axis

and z-axis.
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Model Training with Fourier Transform

Figure 22

Figure 22 shows a fourier transform applied to the time series dataset. The DC component is the

first value and is usually high, but the frequency signal is symmetrical about the center (around

the 7th accelerometer value). As mentioned before, 18 key features were extracted from the

second half of the fourier transform (mean, median, mode, etc) since the DC component is high

and should be discarded.

Model Testing - FOG Model

Figure 23
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The FOG model was tested with a 5 fold Cross validation performed in Python. Data is typically

split using the train test split (70% of the data used to train models, and the other 30% used to

test the model accuracy) in classical problems, but splitting the data with a train-test split has

more bias and can lead to overfitting, so k-fold splits the data in a different manner (Figure 23).

K-fold cross validation involves splitting data into k equal folds (Figure 23). The first k-1 folds

are used for training, and the remaining are used for testing. This is repeated for all k-folds, and

the mean of the accuracies of each k-fold is returned. The 5-fold CV calculates sensitivity,

specificity, F1 score, MCC, and accuracy. Sensitivity measures the ability of the model to predict

FOG windows. Specificity measures the ability of the model to predict Non-FOG windows or be

able to distinguish FOG from Non-FOG. The equations are shown below.

Equation 1: Sensitivity and Specificity measurements

F1 score is the harmonic mean of precision and recall, which measures the balance between the

two metrics. It provides a single number to summarize the overall performance of a model. MCC

(Matthews correlation coefficient) measures the correlation between predicted and actual binary

classifications, taking into account true positives, true negatives, false positives, and false

negatives. It ranges from -1 (completely incorrect) to 1 (perfectly correct), with 0 indicating no

correlation. The equations for each are shown below.
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Equation 2: F1 and MCC measurements

Accuracy 0.87

F1 Score 0.82

Sensitivity 0.77

Specificity 0.91

Table 1 and Figure 24: Model Performance

Table 1 and Figure 24 show the performance of the AdaBoost model in predicting FOG windows

vs Non-FOG windows (windows of accelerometer data annotated during FOG events). The

scores are the average of the model’s performance for each fold during the 5-fold CV. The model

seems to have slightly outperformed the Daphnet study in predicting FOG events, as the

sensitivity of 77% is greater than the Daphnet reported sensitivity of 73%. The model also shows

a fairly high accuracy of 87% in predicting FOG events. In addition to 5-fold CV, another

method of cross validation was used to test the model called LOOCV

(Leave-One-Out-Cross-Validation). LOOCV is a technique used for assessing the performance

of an MLmodel, particularly in cases where the data sample size is relatively small. In LOOCV,

the model is trained on all but one data point in the dataset, and then the performance of the

model is evaluated on the one data point that was held out. This process is repeated for each data

point in the dataset, and the performance of the model is averaged across all the held-out data
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points.This method of cross validation more accurately represents the model’s performance in

the real world, where it is trained on the entire dataset and only makes predictions on a single

data point. However, the method is also computationally expensive (since the model has to be

tested on every datapoint) so was only used to evaluate the model.

Macro Average Weighted Average

Accuracy 0.88 0.88

F1 Score 0.85 0.88

Sensitivity 0.85 0.88

Specificity 0.84 0.88

Table 2 and Figure 25: Model

Performance

Upon LOOCV, the model

performed well with a large

improvement in sensitivity

(88%) and an improvement in

accuracy of 88%.
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Activity Recognition Model

Figures 26 - 27

Figures 26 and 27 show the 5-fold cross validation results for the sensitivity of the XGBoost

Activity Recognition model in distinguishing walking, jogging, sitting, and standing. The model

showed an average 5-fold CV sensitivity of 88, 86, 99, 97 % for predicting walking, jogging,

sitting, and standing respectively. This model was also tested at 3 different window lengths (15,

50, and 100) to identify the best window length. The average F1-score across 5-folds for the

model in predicting each activity is shown in Figure 28.

36



15 rows 50 Rows 100 Rows

Jogging 92.2 93.6 93.6

Sitting 95 94 93.2

Standing 92.6 93.4 92.2

Walking 83.4 89 93

Figure 28 and Table 3

Based on Figure 28, a higher window size clearly shows a higher F1 score when predicting

walking. However, for other activities, window size seems to have a negligible effect on model

performance. Table 3 shows that the model shows a high F1 score (>90%) for predicting all

activities when trained on windows of 50 and 100 rows and a high F1 score in all activities

except walking when trained on windows of size 15.
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Conclusions and Discussions

This project successfully created a robust machine learning pipeline with an integrated

and scalable iOS prototype application for activity recognition and Freezing of Gait (FOG)

monitoring in Parkinson’s Patients. Upon LOOCV and 5-fold cross validation, the AdaBoost

machine learning model achieved an 87 and 88% accuracy respectively in classifying FOG

events in the training dataset. The Activity Recognition Model with an XGBoost model

framework achieved F1 scores of 93, 94, 93.4, and 89 in classifying jogging, sitting, standing,

and walking respectively.

Further development of this app will benefit Parkinson’s Patients by providing an

accurate and reliable method of diagnosis via monitoring of Freezing of Gait, and will allow a

user to keep track of daily FOG events to determine the severity of their disease symptoms.

There are a few limitations with the project: 1) The use of a sliding window without overlapping

windows may decrease model accuracy, since overlapping windows ensures that every

subsequent row in the transformed dataset has some information from the data in the previous

window as well. 2) The FOG model’s accuracy can still be improved, and an active learning

approach may be required for more accurate FOG detection for a specific user. 3) Only data from

one subject from the original Daphnet dataset was used to train the FOG model, since the model

performed poorly ( < 70% accuracy) with other data or with combinations of subject data. 4) The

use of smaller sliding windows (n <50) may improve app latency but may not always be able to

capture the full duration of FOG events, which are usually much longer. 5) App development is

still in a preliminary stage, and a UI is still yet to be created.

In the future, we plan on implementing an active learning approach where a user can

manually input data on recorded FOG events to improve the model’s predictive accuracy and to

have the model learn the patterns of FOG in a specific user. In this study, only a baseline model

to predict FOG was created and active learning may be required for more accurate detection of

FOG. In addition, user testing of the app is in progress as of now, and real-life app testing data

will be collected by our presentation day. Finally, the creation of an app user interface is still in

progress.
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